
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image - Registration Using Optical Flow
Image registration using optical flow is a computer vision and image processing technique that aims to determine the displacement of pixels between two consecutive image frames in a sequence.
Optical flow is defined as a vector field (u, v) that verifying image1(x+u, y+v) = image0(x, y), where (image0, image1) represents two consecutive 2D frames in a sequence. This vector field is used for image registration through image warping.
This tutorial demonstration the image registration using optical flow.
To display registration results, an RGB image is created. The result of the registration is assigned to the red channel, while the target image is assigned to the green and blue channels. A perfect registration results in a gray level image, while misregistered pixels are represented by colors in the constructed RGB image.
Example
The following example demonstrates the process of image registration using optical flow. The function optical_flow_tvl1() is used to estimate the optical flow between the two frames.
import numpy as np from matplotlib import pyplot as plt from skimage.color import rgb2gray from skimage.data import stereo_motorcycle, vortex from skimage.transform import warp from skimage.registration import optical_flow_tvl1, optical_flow_ilk # Load the sequence first_frame, second_frame, disparity_map = stereo_motorcycle() # Convert the images to grayscale, as color is not supported first_frame = rgb2gray(first_frame) second_frame = rgb2gray(second_frame) # Compute the optical flow v, u = optical_flow_tvl1(first_frame, second_frame) # Define the image grid coordinates nr, nc = first_frame.shape row_coords, col_coords = np.meshgrid(np.arange(nr), np.arange(nc), indexing='ij') # Use the estimated optical flow for registration second_frame_warp = warp(second_frame, np.array([row_coords + v, col_coords + u]), mode='edge') # Build an RGB image with the unregistered sequence unregistered_seq_im = np.zeros((nr, nc, 3)) unregistered_seq_im[..., 0] = second_frame unregistered_seq_im[..., 1] = first_frame unregistered_seq_im[..., 2] = first_frame # Build an RGB image with the registered sequence registered_seq_im = np.zeros((nr, nc, 3)) registered_seq_im[..., 0] = second_frame_warp registered_seq_im[..., 1] = first_frame registered_seq_im[..., 2] = first_frame # Build an RGB image with the target sequence target_im = np.zeros((nr, nc, 3)) target_im[..., 0] = first_frame target_im[..., 1] = first_frame target_im[..., 2] = first_frame # Display the results fig, (ax0, ax1, ax2) = plt.subplots(3, 1, figsize=(5, 10)) ax0.imshow(unregistered_seq_im) ax0.set_title("Unregistered sequence") ax0.set_axis_off() ax1.imshow(registered_seq_im) ax1.set_title("Registered sequence") ax1.set_axis_off() ax2.imshow(target_im) ax2.set_title("Target") ax2.set_axis_off() fig.tight_layout() plt.show()
Output

Example
In this example, the "Iterative Lukas-Kanade algorithm (iLK)" is applied to a pair of images, likely capturing the motion of particles or features. It aims to demonstrate how the iLK algorithm can be used to estimate optical flow and visualize motion within an image sequence.
import numpy as np from matplotlib import pyplot as plt from skimage.color import rgb2gray from skimage.data import vortex from skimage.transform import warp from skimage.registration import optical_flow_ilk # Load two images from the 'vortex' dataset image0, image1 = vortex() # Compute optical flow using the Iterative Lukas-Kanade algorithm optical_flow_u, optical_flow_v = optical_flow_ilk(image0, image1, radius=15) # Compute the magnitude of the optical flow vectors flow_magnitude = np.sqrt(optical_flow_u ** 2 + optical_flow_v ** 2) # Create a visualization of the optical flow results import matplotlib.pyplot as plt # Set up the subplots fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(8, 4)) # Display the first image from the sequence ax0.imshow(image0, cmap='gray') ax0.set_title("Sequence Image Sample") ax0.set_axis_off() # Define parameters for quiver plot num_vectors = 20 # Number of vectors to be displayed along each dimension rows, cols = image0.shape step = max(rows // num_vectors, cols // num_vectors) # Create coordinates for quiver plot y, x = np.mgrid[:rows:step, :cols:step] u_ = optical_flow_u[::step, ::step] v_ = optical_flow_v[::step, ::step] # Display optical flow magnitude and vector field using quiver plot ax1.imshow(flow_magnitude) ax1.quiver(x, y, u_, v_, color='r', units='dots', angles='xy', scale_units='xy', lw=3) ax1.set_title("Optical Flow Magnitude and Vector Field") ax1.set_axis_off() # Ensure proper layout and display the plot fig.tight_layout() plt.show()
Output
