
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image − Median Filter
The Median filter is a non-linear image processing filter commonly used for noise removal and image smoothing. It operates by computing the local gray-level histogram within a pixel's neighborhood, defined by a 2D structuring element. The key feature of the median filter is that it selects the middle value from this histogram as the filtered value for each pixel. This filter is an excellent choice for smoothing and removing the noise of images while preserving important image details and boundaries.
The Scikit-Image (skimage) provides the median() filters as part of the "rank filters" category to perform these image processing tasks.
Using the skimage.filters.rank.median() function
The rank.median() function is used to compute the local median of an image within a specified neighborhood. This is a rank-based implementation of median filtering specifically designed for unsigned integer images.
Syntax
Following is the syntax of this function −
skimage.filters.rank.median(image, footprint=None, out=None, mask=None, shift_x=False, shift_y=False, shift_z=False)
Parameters
Here are the details of its parameters −
- image: Input image to compute the local mean. It should be a NumPy ndarray with dimensions ([P,] M, N) and dtype (uint8, uint16).
- footprint: The neighborhood or footprint is expressed as a NumPy ndarray of 1's and 0's. If not provided (set to None), a default square neighborhood of size 3x3 is used.
- out (optional): If provided, it should be a NumPy array with the same dimensions as the input image ([P,] M, N) array (same dtype as input). If not provided (None), a new array will be allocated for the output.
- mask (optional): A mask array that can be used to define the area of the image included in the local neighborhood. It is of type integer or float. Pixels with values greater than 0 in the mask are included in the neighborhood calculation. If not provided (None), the complete image is used by default.
- shift_x, shift_y, shift_z (optional): These parameters specify an offset added to the center point of the footprint. The shift is bounded to the footprint sizes, meaning the center must remain inside the given footprint.
Return Value
The function returns an output image, which is a NumPy array of the same data type as the input image ([P,] M, N) ndarray).
Example 1
The following example demonstrates how to Find the local median of the image using a disk-shaped neighborhood −
import matplotlib.pyplot as plt from skimage import io, util from skimage.morphology import disk from skimage.filters.rank import median # Load the example image as a grayscale image image = io.imread('Images/black rose.jpg', as_gray=True) image = util.img_as_ubyte(image) # Finding the local median of the image using a disk-shaped neighborhood result = median(image, disk(5)) # Plot the original image and the result fig, axes = plt.subplots(1, 2, figsize=(15, 5)) ax = axes.ravel() # Display the Original Image ax[0].imshow(image, cmap='gray') ax[0].set_title('Original Image') ax[0].axis('off') # Display the Result ax[1].imshow(result, cmap='gray') ax[1].set_title('Resultant image after calculating the local median') ax[1].axis('off') plt.tight_layout() plt.show()
Output
Example 2
The following example demonstrates noise removal using the rank.median() filter. It adds noise to an image and then applies the median filter with different filter radii to remove the noise efficiently −
from skimage.filters.rank import median from skimage.morphology import disk import numpy as np import matplotlib.pyplot as plt from skimage import io, util # Load the example image as a grayscale image image = io.imread('Images/black rose.jpg', as_gray=True) image = util.img_as_ubyte(image) # Add the noise to the image rng = np.random.default_rng() noise = rng.random(image.shape) image[noise > 0.99] = 255 image[noise < 0.01] = 0 # Apply median filtering with different filter radii and display the results fig, axes = plt.subplots(2, 2, figsize=(10, 8), sharex=True, sharey=True) ax = axes.ravel() ax[0].imshow(image, vmin=0, vmax=255, cmap=plt.cm.gray) ax[0].set_title('Input Noisy image') ax[1].imshow(median(image, disk(1)), vmin=0, vmax=255, cmap=plt.cm.gray) ax[1].set_title('Median $r=1$') ax[2].imshow(median(image, disk(5)), vmin=0, vmax=255, cmap=plt.cm.gray) ax[2].set_title('Median $r=5$') ax[3].imshow(median(image, disk(20)), vmin=0, vmax=255, cmap=plt.cm.gray) ax[3].set_title('Median $r=20$') for a in ax: a.axis('off') plt.tight_layout()