
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image - Histogram Matching
A Histogram is a graphical representation that shows the distribution of pixel intensities of an image. For a digital image histogram plots a graph between pixel intensity versus the number of pixels. Where the x-axis represents the intensity values, and the y-axis represents the frequency or number of pixels in that particular intensity.
Histogram helps to get a basic idea about image information like contrast, brightness, intensity distribution, etc., by simply looking at the histogram of an image.
Histogram Matching using Scikit Image
Histogram matching, also known as histogram specification or histogram equalization matching, is a technique used to transform the intensity distribution of an image to match a specified target histogram. The goal of histogram matching is to take an input image and generate an output image that has a histogram shape similar to a specific or reference histogram.
Histogram matching is commonly used in various image processing applications, such as color correction, image enhancement, and feature-matching tasks.
In the scikit-image library, the exposure module provides the match_histograms() function to perform histogram matching.
The exposure.match_histograms() function
This function is used to adjust an input image so that its cumulative histogram matches that of a reference image. The adjustment is applied separately for each channel in color images.
Syntax
Following is the syntax of this function −
skimage.exposure.match_histograms(image, reference, *, channel_axis=None)
Parameters
- image: The input image to be adjusted, which can be grayscale or color.
- reference: The reference image whose histogram the input image will be matched to. It must have the same number of channels as the input image.
- channel_axis: An integer or None indicates which axis of the image array corresponds to channels. If None, the image is assumed to be a grayscale (single channel) image.
Return Value
It returns a ndarray representing the transformed input image with its histogram adjusted to match that of the reference image.
Example
The following example demonstrates how to apply histogram matching on a grayscale image using exposure.match_histograms() function.
import matplotlib.pyplot as plt from skimage import io, exposure from skimage.util import img_as_ubyte # Load the input image and reference image input_image = img_as_ubyte(io.imread('Images/blue.jpg', as_gray=True)) reference_image = img_as_ubyte(io.imread('Images/tree.jpg', as_gray=True)) # Perform histogram matching matched_image = exposure.match_histograms(input_image, reference_image) # Display the original input image, reference image, and the histogram-matched output image fig, axes = plt.subplots(1, 3, figsize=(15, 5)) axes[0].imshow(input_image, cmap='gray') axes[0].set_title('Input Image') axes[0].axis('off') axes[1].imshow(reference_image, cmap='gray') axes[1].set_title('Reference Image') axes[1].axis('off') axes[2].imshow(matched_image, cmap='gray') axes[2].set_title('Histogram-Matched Image') axes[2].axis('off') # Show the plot plt.tight_layout() plt.show()
Output
On executing the above program, you will get the following output −

It's important to note that, for color images: the number of channels in the input image and the reference image must be the same; otherwise, a ValueError will be raised.
Example
The following example demonstrates how to apply histogram matching on a color image using exposure.match_histograms() function.
import matplotlib.pyplot as plt from skimage import io, exposure # Load the input image and reference image input_image = io.imread('Images/Tajmahal.jpg') reference_image = io.imread('Images/rose.jpg') # Perform histogram matching matched_image = exposure.match_histograms(input_image, reference_image) # Display the original input image, reference image, and the histogram-matched output image fig, axes = plt.subplots(1, 3, figsize=(15, 5)) axes[0].imshow(input_image) axes[0].set_title('Input Image') axes[0].axis('off') axes[1].imshow(reference_image) axes[1].set_title('Reference Image') axes[1].axis('off') axes[2].imshow(matched_image) axes[2].set_title('Histogram-Matched Image') axes[2].axis('off') # Show the plot plt.tight_layout() plt.show()
Output
On executing the above program, you will get the following output −
