
- SciPy - Home
- SciPy - Introduction
- SciPy - Environment Setup
- SciPy - Basic Functionality
- SciPy - Relationship with NumPy
- SciPy Clusters
- SciPy - Clusters
- SciPy - Hierarchical Clustering
- SciPy - K-means Clustering
- SciPy - Distance Metrics
- SciPy Constants
- SciPy - Constants
- SciPy - Mathematical Constants
- SciPy - Physical Constants
- SciPy - Unit Conversion
- SciPy - Astronomical Constants
- SciPy - Fourier Transforms
- SciPy - FFTpack
- SciPy - Discrete Fourier Transform (DFT)
- SciPy - Fast Fourier Transform (FFT)
- SciPy Integration Equations
- SciPy - Integrate Module
- SciPy - Single Integration
- SciPy - Double Integration
- SciPy - Triple Integration
- SciPy - Multiple Integration
- SciPy Differential Equations
- SciPy - Differential Equations
- SciPy - Integration of Stochastic Differential Equations
- SciPy - Integration of Ordinary Differential Equations
- SciPy - Discontinuous Functions
- SciPy - Oscillatory Functions
- SciPy - Partial Differential Equations
- SciPy Interpolation
- SciPy - Interpolate
- SciPy - Linear 1-D Interpolation
- SciPy - Polynomial 1-D Interpolation
- SciPy - Spline 1-D Interpolation
- SciPy - Grid Data Multi-Dimensional Interpolation
- SciPy - RBF Multi-Dimensional Interpolation
- SciPy - Polynomial & Spline Interpolation
- SciPy Curve Fitting
- SciPy - Curve Fitting
- SciPy - Linear Curve Fitting
- SciPy - Non-Linear Curve Fitting
- SciPy - Input & Output
- SciPy - Input & Output
- SciPy - Reading & Writing Files
- SciPy - Working with Different File Formats
- SciPy - Efficient Data Storage with HDF5
- SciPy - Data Serialization
- SciPy Linear Algebra
- SciPy - Linalg
- SciPy - Matrix Creation & Basic Operations
- SciPy - Matrix LU Decomposition
- SciPy - Matrix QU Decomposition
- SciPy - Singular Value Decomposition
- SciPy - Cholesky Decomposition
- SciPy - Solving Linear Systems
- SciPy - Eigenvalues & Eigenvectors
- SciPy Image Processing
- SciPy - Ndimage
- SciPy - Reading & Writing Images
- SciPy - Image Transformation
- SciPy - Filtering & Edge Detection
- SciPy - Top Hat Filters
- SciPy - Morphological Filters
- SciPy - Low Pass Filters
- SciPy - High Pass Filters
- SciPy - Bilateral Filter
- SciPy - Median Filter
- SciPy - Non - Linear Filters in Image Processing
- SciPy - High Boost Filter
- SciPy - Laplacian Filter
- SciPy - Morphological Operations
- SciPy - Image Segmentation
- SciPy - Thresholding in Image Segmentation
- SciPy - Region-Based Segmentation
- SciPy - Connected Component Labeling
- SciPy Optimize
- SciPy - Optimize
- SciPy - Special Matrices & Functions
- SciPy - Unconstrained Optimization
- SciPy - Constrained Optimization
- SciPy - Matrix Norms
- SciPy - Sparse Matrix
- SciPy - Frobenius Norm
- SciPy - Spectral Norm
- SciPy Condition Numbers
- SciPy - Condition Numbers
- SciPy - Linear Least Squares
- SciPy - Non-Linear Least Squares
- SciPy - Finding Roots of Scalar Functions
- SciPy - Finding Roots of Multivariate Functions
- SciPy - Signal Processing
- SciPy - Signal Filtering & Smoothing
- SciPy - Short-Time Fourier Transform
- SciPy - Wavelet Transform
- SciPy - Continuous Wavelet Transform
- SciPy - Discrete Wavelet Transform
- SciPy - Wavelet Packet Transform
- SciPy - Multi-Resolution Analysis
- SciPy - Stationary Wavelet Transform
- SciPy - Statistical Functions
- SciPy - Stats
- SciPy - Descriptive Statistics
- SciPy - Continuous Probability Distributions
- SciPy - Discrete Probability Distributions
- SciPy - Statistical Tests & Inference
- SciPy - Generating Random Samples
- SciPy - Kaplan-Meier Estimator Survival Analysis
- SciPy - Cox Proportional Hazards Model Survival Analysis
- SciPy Spatial Data
- SciPy - Spatial
- SciPy - Special Functions
- SciPy - Special Package
- SciPy Advanced Topics
- SciPy - CSGraph
- SciPy - ODR
- SciPy Useful Resources
- SciPy - Reference
- SciPy - Quick Guide
- SciPy - Cheatsheet
- SciPy - Useful Resources
- SciPy - Discussion
SciPy - solve_toeplitz() Function
The scipy.linalg.solve_toeplitz() method efficiently solves linear systems Ax=b, where A is a Toeplitz matrix, using the Levinson-Durbin recursion. With respect to generic solvers, this method uses recursion to find solutions much faster and with less complexity.
Systems of equations having structured matrices, which appear very commonly in signal processing, time series, and control systems, are typically solved using this method. It is quite versatile in use since it accommodates the possibility of more than one right-hand side.
The technique utilizes Levinson-Durbin recursion in order to optimize efficiency for Toeplitz matrices. It is very compatible with other numerical methods and allows for both single and many right-hand sides.
solve_toeplitz() is often used in combination with eigenvalue decomposition (eigvals()) for stability analysis or matrix reconstruction (toeplitz()) for solution verification. Strong solutions and system insights are ensured with this combination.
Syntax
Following is the syntax of the SciPy solve_toeplitz() method −
.solve_toeplitz(c_or_cr, b, check_finite=True)
Parameters
Following are the parameters of solve_toeplitz() method
c_or_cr (array_like) − The Toeplitz matrix A is represented by its first column c and optionally its first row r. If a tuple (c,r) is provided, the first element of c and r must be the same to ensure consistency.
b array_like, shape (n,) or (n, k) − Input equation of Right-hand side.
lower (array_like) − The matrix to multiply with Toeplitz matrix.
check_finite (bool, optional)− If True, checks whether the input contains only finite numbers. Disabling this can improve performance but risks issues with invalid inputs.
Return Value
x (ndarray) − The solution to the linear system T. x=b, where x matches the dimensions of b.
Example 1
In the below example we have created a Toeplitz matrix using its first column.The function solves the system T.
import numpy as np import scipy.linalg from scipy.linalg import solve_toeplitz # First column of the Toeplitz matrix c = [2, 1, 0] # Right-hand side vector b = [4, 5, 6] # Solve the system x = scipy.linalg.solve_toeplitz(c, b) print(x)
When we run above program, it produces following result
[2.0000000e+00 4.4408921e-16 3.0000000e+00]
Example 2
In this code, we defined the Toeplitz matrix using both its first column [3, 2, 1] and first row [3, 4, 5] and solved the system Ax=b using solve_toeplitz() method.
import numpy as np from scipy.linalg import solve_toeplitz # First column and first row of the Toeplitz matrix c_or_cr = ([3, 2, 1], [3, 4, 5]) # Right-hand side vector b = [9, 8, 7] # Solve the system x = solve_toeplitz(c_or_cr, b) print(x)
Following is an output of the above code
[-1. -2. 4.]