
- SciPy - Home
- SciPy - Introduction
- SciPy - Environment Setup
- SciPy - Basic Functionality
- SciPy - Relationship with NumPy
- SciPy Clusters
- SciPy - Clusters
- SciPy - Hierarchical Clustering
- SciPy - K-means Clustering
- SciPy - Distance Metrics
- SciPy Constants
- SciPy - Constants
- SciPy - Mathematical Constants
- SciPy - Physical Constants
- SciPy - Unit Conversion
- SciPy - Astronomical Constants
- SciPy - Fourier Transforms
- SciPy - FFTpack
- SciPy - Discrete Fourier Transform (DFT)
- SciPy - Fast Fourier Transform (FFT)
- SciPy Integration Equations
- SciPy - Integrate Module
- SciPy - Single Integration
- SciPy - Double Integration
- SciPy - Triple Integration
- SciPy - Multiple Integration
- SciPy Differential Equations
- SciPy - Differential Equations
- SciPy - Integration of Stochastic Differential Equations
- SciPy - Integration of Ordinary Differential Equations
- SciPy - Discontinuous Functions
- SciPy - Oscillatory Functions
- SciPy - Partial Differential Equations
- SciPy Interpolation
- SciPy - Interpolate
- SciPy - Linear 1-D Interpolation
- SciPy - Polynomial 1-D Interpolation
- SciPy - Spline 1-D Interpolation
- SciPy - Grid Data Multi-Dimensional Interpolation
- SciPy - RBF Multi-Dimensional Interpolation
- SciPy - Polynomial & Spline Interpolation
- SciPy Curve Fitting
- SciPy - Curve Fitting
- SciPy - Linear Curve Fitting
- SciPy - Non-Linear Curve Fitting
- SciPy - Input & Output
- SciPy - Input & Output
- SciPy - Reading & Writing Files
- SciPy - Working with Different File Formats
- SciPy - Efficient Data Storage with HDF5
- SciPy - Data Serialization
- SciPy Linear Algebra
- SciPy - Linalg
- SciPy - Matrix Creation & Basic Operations
- SciPy - Matrix LU Decomposition
- SciPy - Matrix QU Decomposition
- SciPy - Singular Value Decomposition
- SciPy - Cholesky Decomposition
- SciPy - Solving Linear Systems
- SciPy - Eigenvalues & Eigenvectors
- SciPy Image Processing
- SciPy - Ndimage
- SciPy - Reading & Writing Images
- SciPy - Image Transformation
- SciPy - Filtering & Edge Detection
- SciPy - Top Hat Filters
- SciPy - Morphological Filters
- SciPy - Low Pass Filters
- SciPy - High Pass Filters
- SciPy - Bilateral Filter
- SciPy - Median Filter
- SciPy - Non - Linear Filters in Image Processing
- SciPy - High Boost Filter
- SciPy - Laplacian Filter
- SciPy - Morphological Operations
- SciPy - Image Segmentation
- SciPy - Thresholding in Image Segmentation
- SciPy - Region-Based Segmentation
- SciPy - Connected Component Labeling
- SciPy Optimize
- SciPy - Optimize
- SciPy - Special Matrices & Functions
- SciPy - Unconstrained Optimization
- SciPy - Constrained Optimization
- SciPy - Matrix Norms
- SciPy - Sparse Matrix
- SciPy - Frobenius Norm
- SciPy - Spectral Norm
- SciPy Condition Numbers
- SciPy - Condition Numbers
- SciPy - Linear Least Squares
- SciPy - Non-Linear Least Squares
- SciPy - Finding Roots of Scalar Functions
- SciPy - Finding Roots of Multivariate Functions
- SciPy - Signal Processing
- SciPy - Signal Filtering & Smoothing
- SciPy - Short-Time Fourier Transform
- SciPy - Wavelet Transform
- SciPy - Continuous Wavelet Transform
- SciPy - Discrete Wavelet Transform
- SciPy - Wavelet Packet Transform
- SciPy - Multi-Resolution Analysis
- SciPy - Stationary Wavelet Transform
- SciPy - Statistical Functions
- SciPy - Stats
- SciPy - Descriptive Statistics
- SciPy - Continuous Probability Distributions
- SciPy - Discrete Probability Distributions
- SciPy - Statistical Tests & Inference
- SciPy - Generating Random Samples
- SciPy - Kaplan-Meier Estimator Survival Analysis
- SciPy - Cox Proportional Hazards Model Survival Analysis
- SciPy Spatial Data
- SciPy - Spatial
- SciPy - Special Functions
- SciPy - Special Package
- SciPy Advanced Topics
- SciPy - CSGraph
- SciPy - ODR
- SciPy Useful Resources
- SciPy - Reference
- SciPy - Quick Guide
- SciPy - Cheatsheet
- SciPy - Useful Resources
- SciPy - Discussion
SciPy - ndimage.binary_dilation() Function
The scipy.ndimage.binary_dilation() is a function in SciPy, which is used to perform the binary dilation operation on a binary image or array. Dilation expands the boundaries of foreground objects i.e., pixels with value 1 in the image by adding neighboring background pixels i.e., value 0 to the objects.
This function takes the input binary image and applies a structuring element i.e., a kernel, that defines the shape and size of the neighborhood for dilation. The output is a new binary image where foreground regions grow based on the structuring element.
The common parameters include 'structure' for defining the kernel, 'iterations' for repeated dilation and 'origin' for adjusting the kernel's placement.
Syntax
Following is the syntax of the function scipy.ndimage.binary_dilation() to perform Dilation operation on an image −
scipy.ndimage.binary_dilation(input, structure=None, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False)
Parameters
Following are the parameters of the scipy.ndimage.binary_dilation() function −
- input: The input image or array which can be binary or grayscale, on which the binary dilation operation is applied.
- structure(optional): It is an array that explicitly specifies the structuring element. By default a cross-shaped structuring element is used.
- iterations(optional): The number of times the dilation operation is applied. By default it is set to 1. If -1 then dilation is applied until the result no longer changes.
- mask(optional): A binary mask that limits the dilation operation to specific areas of the input image and only regions where the mask is non-zero will be dilated.
- output(optional): This is an array where the result will be stored. If not provided then a new array is allocated.
- border_value(optional): This parameter specifies the value used for padding the borders of the image. It can be 0 or 1 with a default value of 0.
- origin(optional): This parameter controls the placement of the structuring element relative to the current pixel. A value of 0 centers the structuring element at the pixel. Positive or negative values shift the structuring element.
- brute_force(optional): If True then a brute-force method is used for dilation, which can be slower but may handle certain custom structuring elements more effectively. The default value is False.
Return Value
The scipy.ndimage.binary_dilation() function returns the binary image after applying the dilation.
Basic Binary Dilation
The default structuring element is a cross-shaped kernel which dilates the input binary image by expanding foreground regions. Following is the example which shows how to use scipy.ndimage.binary_dilation() with its default settings −
import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import binary_dilation # Create a binary input image image = np.array([ [0, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 1, 0, 1, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0] ], dtype=bool) # Apply binary dilation with default parameters dilated_image = binary_dilation(image) # Visualize the input and output plt.figure(figsize=(10, 5)) # Original Image plt.subplot(1, 2, 1) plt.title("Original Image") plt.imshow(image, cmap='gray') plt.axis('off') # Dilated Image plt.subplot(1, 2, 2) plt.title("Dilated Image (Default Parameters)") plt.imshow(dilated_image, cmap='gray') plt.axis('off') plt.tight_layout() plt.show()
Here is the output of the function scipy.ndimage.binary_dilation() which is used to implement basic Example of Binary Dilation −

Binary Dilation with a Custom Structuring
The structuring element will be different from the default cross-shaped kernel. In this example we will use a custom structuring element i.e., disk-shaped structuring element will be used and we will apply the dilation operation to expand the foreground regions of a binary image −
import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import binary_dilation from skimage.morphology import disk # Create a binary input image image = np.array([ [0, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 1, 0, 1, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0] ], dtype=bool) # Create a custom disk-shaped structuring element with radius 2 structuring_element = disk(2) # Apply binary dilation with the custom structuring element dilated_image = binary_dilation(image, structure=structuring_element) # Visualize the input and output plt.figure(figsize=(10, 5)) # Original Image plt.subplot(1, 2, 1) plt.title("Original Image") plt.imshow(image, cmap='gray') plt.axis('off') # Dilated Image plt.subplot(1, 2, 2) plt.title("Dilated Image (Custom Structuring Element)") plt.imshow(dilated_image, cmap='gray') plt.axis('off') plt.tight_layout() plt.show()
Here is the output of the function scipy.ndimage.binary_dilation() which is used to implement Binary Dilation with custom Structuring element −

Binary Dilation Multiple Times
In this example, we will show how to apply binary dilation multiple times using the iterations parameter. This parameter allows us to repeat the dilation operation multiple times which will progressively expand the foreground regions of the binary image −
import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import binary_dilation from skimage.morphology import disk # Create a binary input image image = np.array([ [0, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 1, 0, 1, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0] ], dtype=bool) # Create a custom disk-shaped structuring element with radius 1 structuring_element = disk(1) # Apply binary dilation with 2 iterations dilated_image_2_iter = binary_dilation(image, structure=structuring_element, iterations=2) # Apply binary dilation with 3 iterations dilated_image_3_iter = binary_dilation(image, structure=structuring_element, iterations=3) # Visualize the original and dilated images plt.figure(figsize=(12, 6)) # Original Image plt.subplot(1, 3, 1) plt.title("Original Image") plt.imshow(image, cmap='gray') plt.axis('off') # Dilated Image (2 Iterations) plt.subplot(1, 3, 2) plt.title("Dilated Image (2 Iterations)") plt.imshow(dilated_image_2_iter, cmap='gray') plt.axis('off') # Dilated Image (3 Iterations) plt.subplot(1, 3, 3) plt.title("Dilated Image (3 Iterations)") plt.imshow(dilated_image_3_iter, cmap='gray') plt.axis('off') plt.tight_layout() plt.show()
Here is the output of the function scipy.ndimage.binary_dilation() which is used to implement Binary Dilation with iteration −
