
- SciPy - Home
- SciPy - Introduction
- SciPy - Environment Setup
- SciPy - Basic Functionality
- SciPy - Relationship with NumPy
- SciPy Clusters
- SciPy - Clusters
- SciPy - Hierarchical Clustering
- SciPy - K-means Clustering
- SciPy - Distance Metrics
- SciPy Constants
- SciPy - Constants
- SciPy - Mathematical Constants
- SciPy - Physical Constants
- SciPy - Unit Conversion
- SciPy - Astronomical Constants
- SciPy - Fourier Transforms
- SciPy - FFTpack
- SciPy - Discrete Fourier Transform (DFT)
- SciPy - Fast Fourier Transform (FFT)
- SciPy Integration Equations
- SciPy - Integrate Module
- SciPy - Single Integration
- SciPy - Double Integration
- SciPy - Triple Integration
- SciPy - Multiple Integration
- SciPy Differential Equations
- SciPy - Differential Equations
- SciPy - Integration of Stochastic Differential Equations
- SciPy - Integration of Ordinary Differential Equations
- SciPy - Discontinuous Functions
- SciPy - Oscillatory Functions
- SciPy - Partial Differential Equations
- SciPy Interpolation
- SciPy - Interpolate
- SciPy - Linear 1-D Interpolation
- SciPy - Polynomial 1-D Interpolation
- SciPy - Spline 1-D Interpolation
- SciPy - Grid Data Multi-Dimensional Interpolation
- SciPy - RBF Multi-Dimensional Interpolation
- SciPy - Polynomial & Spline Interpolation
- SciPy Curve Fitting
- SciPy - Curve Fitting
- SciPy - Linear Curve Fitting
- SciPy - Non-Linear Curve Fitting
- SciPy - Input & Output
- SciPy - Input & Output
- SciPy - Reading & Writing Files
- SciPy - Working with Different File Formats
- SciPy - Efficient Data Storage with HDF5
- SciPy - Data Serialization
- SciPy Linear Algebra
- SciPy - Linalg
- SciPy - Matrix Creation & Basic Operations
- SciPy - Matrix LU Decomposition
- SciPy - Matrix QU Decomposition
- SciPy - Singular Value Decomposition
- SciPy - Cholesky Decomposition
- SciPy - Solving Linear Systems
- SciPy - Eigenvalues & Eigenvectors
- SciPy Image Processing
- SciPy - Ndimage
- SciPy - Reading & Writing Images
- SciPy - Image Transformation
- SciPy - Filtering & Edge Detection
- SciPy - Top Hat Filters
- SciPy - Morphological Filters
- SciPy - Low Pass Filters
- SciPy - High Pass Filters
- SciPy - Bilateral Filter
- SciPy - Median Filter
- SciPy - Non - Linear Filters in Image Processing
- SciPy - High Boost Filter
- SciPy - Laplacian Filter
- SciPy - Morphological Operations
- SciPy - Image Segmentation
- SciPy - Thresholding in Image Segmentation
- SciPy - Region-Based Segmentation
- SciPy - Connected Component Labeling
- SciPy Optimize
- SciPy - Optimize
- SciPy - Special Matrices & Functions
- SciPy - Unconstrained Optimization
- SciPy - Constrained Optimization
- SciPy - Matrix Norms
- SciPy - Sparse Matrix
- SciPy - Frobenius Norm
- SciPy - Spectral Norm
- SciPy Condition Numbers
- SciPy - Condition Numbers
- SciPy - Linear Least Squares
- SciPy - Non-Linear Least Squares
- SciPy - Finding Roots of Scalar Functions
- SciPy - Finding Roots of Multivariate Functions
- SciPy - Signal Processing
- SciPy - Signal Filtering & Smoothing
- SciPy - Short-Time Fourier Transform
- SciPy - Wavelet Transform
- SciPy - Continuous Wavelet Transform
- SciPy - Discrete Wavelet Transform
- SciPy - Wavelet Packet Transform
- SciPy - Multi-Resolution Analysis
- SciPy - Stationary Wavelet Transform
- SciPy - Statistical Functions
- SciPy - Stats
- SciPy - Descriptive Statistics
- SciPy - Continuous Probability Distributions
- SciPy - Discrete Probability Distributions
- SciPy - Statistical Tests & Inference
- SciPy - Generating Random Samples
- SciPy - Kaplan-Meier Estimator Survival Analysis
- SciPy - Cox Proportional Hazards Model Survival Analysis
- SciPy Spatial Data
- SciPy - Spatial
- SciPy - Special Functions
- SciPy - Special Package
- SciPy Advanced Topics
- SciPy - CSGraph
- SciPy - ODR
- SciPy Useful Resources
- SciPy - Reference
- SciPy - Quick Guide
- SciPy - Cheatsheet
- SciPy - Useful Resources
- SciPy - Discussion
SciPy - matrix_balance() Function
The matrix_balance() method modifies a matrix to more evenly scale its rows and columns. This has an impact on the precision of computations by reducing large differences in the matrix's values. It useful when we need to solve equations or find eigenvalues.
When we balance a matrix, we make it simpler to use in calculations. This step helps reduce mistakes, speeds up repeated methods, and leads to more reliable outcomes when working with tricky math problems.
Syntax
The syntax for the Scipy matrix_balance() method is as follows −
.matrix_balance(A, permute=True, scale=True, separate=False, overwrite_a=False)
Parameters
This method accepts the following parameters −
A (array_like n,n)− The square matrix to be balanced.
permute (bool, optional) − If True (default), a permutation is applied to the matrix to make it closer to upper triangular form.
scale (bool, optional − If True (default), the rows and columns of the matrix are rescaled to equalize their norms as much as possible.
separate (bool, optional) − If True, the method returns the separate permutation and scaling factors.
overwrite_a (bool, optional) − If True, the input matrix A may be overwritten to save memory.
Return Value
This method returns the following depending on the value of seperate parameter.
balanced (ndarray) − The balanced matrix.
perm (ndarray), scale (ndarray) − If separate=True, perm is the permutation array and scale contains the scaling factors.
info (dict, optional) − May contain additional information about the balancing process.
Example 1: Balancing a 2x2 Matrix
Matrix balancing method is used to modify the scale and structure of the matrix, so we can improve numerical ability and accuracy of computations.
Below code is the example of how to use matrix_balance() method to balances a 2x2 matrix, displaying both the original and balanced versions. This method helps users to understand how matrix balancing can stabilize numerical calculations in real-world scenarios.
import scipy.linalg import numpy as np # Define a simple 2x2 matrix A = np.array([[10, 1], [1, 0.001]]) # Balance the matrix balanced = scipy.linalg.matrix_balance(A) print("Original Matrix:", A) print("\nBalanced Matrix:", balanced)
When we run above program, it produces following result −
Original Matrix: [[1.e+01 1.e+00] [1.e+00 1.e-03]] Balanced Matrix: (array([[1.e+01, 1.e+00], [1.e+00, 1.e-03]]), array([[1., 0.], [0., 1.]]))
Example 2: Permutation and Scaling Factors
A matrix may be scaled and permuted for balancing purposes. The below example shows how to perform this procedure in SciPy and retrieve these factors independently.
Here the scaling factors and permutation are obtained by using scipy.linalg.matrix_balance method with the separate=True parameter on a 2x2 matrix. This helps users to understand how such elements stabilize the matrices in exact numerical computation.
import scipy.linalg import numpy as np # Define a simple 2x2 matrix A = np.array([[8, 1], [7, 0.006]]) perm, scale = scipy.linalg.matrix_balance(A, separate=True) print("\nPermutation Array:", perm) print("\nScaling Factors:", scale)
Following is an output of the above code
Permutation Array: [[8.0e+00 2.0e+00] [3.5e+00 6.0e-03]] Scaling Factors: (array([1., 2.]), array([0, 1]))
Example 3: Balancing a 3x3 Matrix and Analyzing Ratios
Calculations involving eigenvalues and linear algebra benefit by balancing a matrix, in which the structure of the matrix is changed to make the numerical stability better. This example shows how column-to-row sum ratios are affected by balancing.
The code demonstrates how to use matrix_balance() method to balance a 3x3 matrix and compares the column-to-row sum ratios before and after balancing.
import numpy as np from scipy import linalg x = np.array([[2, 50, 0.1], [8, 1, 100], [0.01, 20, 5]]) y, permscale = linalg.matrix_balance(x) # Ratios of column sums to row sums for the original matrix original_ratios = np.abs(x).sum(axis=0) / np.abs(x).sum(axis=1) # Ratios of column sums to row sums for the balanced matrix balanced_ratios = np.abs(y).sum(axis=0) / np.abs(y).sum(axis=1) print("Original Matrix Ratios:", original_ratios) print("\nBalanced Matrix Ratios:", balanced_ratios) print("\nPermutation and Scaling Factors:", permscale)
Output of the above code is as follows −
Original Matrix Ratios: [0.19213052 0.65137615 4.20231907] Balanced Matrix Ratios: [0.66753006 0.98507463 1.22169183] Permutation and Scaling Factors: [[4. 0. 0.] [0. 2. 0.] [0. 0. 1.]]