
- SciPy - Home
- SciPy - Introduction
- SciPy - Environment Setup
- SciPy - Basic Functionality
- SciPy - Relationship with NumPy
- SciPy Clusters
- SciPy - Clusters
- SciPy - Hierarchical Clustering
- SciPy - K-means Clustering
- SciPy - Distance Metrics
- SciPy Constants
- SciPy - Constants
- SciPy - Mathematical Constants
- SciPy - Physical Constants
- SciPy - Unit Conversion
- SciPy - Astronomical Constants
- SciPy - Fourier Transforms
- SciPy - FFTpack
- SciPy - Discrete Fourier Transform (DFT)
- SciPy - Fast Fourier Transform (FFT)
- SciPy Integration Equations
- SciPy - Integrate Module
- SciPy - Single Integration
- SciPy - Double Integration
- SciPy - Triple Integration
- SciPy - Multiple Integration
- SciPy Differential Equations
- SciPy - Differential Equations
- SciPy - Integration of Stochastic Differential Equations
- SciPy - Integration of Ordinary Differential Equations
- SciPy - Discontinuous Functions
- SciPy - Oscillatory Functions
- SciPy - Partial Differential Equations
- SciPy Interpolation
- SciPy - Interpolate
- SciPy - Linear 1-D Interpolation
- SciPy - Polynomial 1-D Interpolation
- SciPy - Spline 1-D Interpolation
- SciPy - Grid Data Multi-Dimensional Interpolation
- SciPy - RBF Multi-Dimensional Interpolation
- SciPy - Polynomial & Spline Interpolation
- SciPy Curve Fitting
- SciPy - Curve Fitting
- SciPy - Linear Curve Fitting
- SciPy - Non-Linear Curve Fitting
- SciPy - Input & Output
- SciPy - Input & Output
- SciPy - Reading & Writing Files
- SciPy - Working with Different File Formats
- SciPy - Efficient Data Storage with HDF5
- SciPy - Data Serialization
- SciPy Linear Algebra
- SciPy - Linalg
- SciPy - Matrix Creation & Basic Operations
- SciPy - Matrix LU Decomposition
- SciPy - Matrix QU Decomposition
- SciPy - Singular Value Decomposition
- SciPy - Cholesky Decomposition
- SciPy - Solving Linear Systems
- SciPy - Eigenvalues & Eigenvectors
- SciPy Image Processing
- SciPy - Ndimage
- SciPy - Reading & Writing Images
- SciPy - Image Transformation
- SciPy - Filtering & Edge Detection
- SciPy - Top Hat Filters
- SciPy - Morphological Filters
- SciPy - Low Pass Filters
- SciPy - High Pass Filters
- SciPy - Bilateral Filter
- SciPy - Median Filter
- SciPy - Non - Linear Filters in Image Processing
- SciPy - High Boost Filter
- SciPy - Laplacian Filter
- SciPy - Morphological Operations
- SciPy - Image Segmentation
- SciPy - Thresholding in Image Segmentation
- SciPy - Region-Based Segmentation
- SciPy - Connected Component Labeling
- SciPy Optimize
- SciPy - Optimize
- SciPy - Special Matrices & Functions
- SciPy - Unconstrained Optimization
- SciPy - Constrained Optimization
- SciPy - Matrix Norms
- SciPy - Sparse Matrix
- SciPy - Frobenius Norm
- SciPy - Spectral Norm
- SciPy Condition Numbers
- SciPy - Condition Numbers
- SciPy - Linear Least Squares
- SciPy - Non-Linear Least Squares
- SciPy - Finding Roots of Scalar Functions
- SciPy - Finding Roots of Multivariate Functions
- SciPy - Signal Processing
- SciPy - Signal Filtering & Smoothing
- SciPy - Short-Time Fourier Transform
- SciPy - Wavelet Transform
- SciPy - Continuous Wavelet Transform
- SciPy - Discrete Wavelet Transform
- SciPy - Wavelet Packet Transform
- SciPy - Multi-Resolution Analysis
- SciPy - Stationary Wavelet Transform
- SciPy - Statistical Functions
- SciPy - Stats
- SciPy - Descriptive Statistics
- SciPy - Continuous Probability Distributions
- SciPy - Discrete Probability Distributions
- SciPy - Statistical Tests & Inference
- SciPy - Generating Random Samples
- SciPy - Kaplan-Meier Estimator Survival Analysis
- SciPy - Cox Proportional Hazards Model Survival Analysis
- SciPy Spatial Data
- SciPy - Spatial
- SciPy - Special Functions
- SciPy - Special Package
- SciPy Advanced Topics
- SciPy - CSGraph
- SciPy - ODR
- SciPy Useful Resources
- SciPy - Reference
- SciPy - Quick Guide
- SciPy - Cheatsheet
- SciPy - Useful Resources
- SciPy - Discussion
SciPy - download_all() Function
The method download_all is used to get all sample datasets used in SciPy documentation and tutorials. This guarantees that the datasets may be used offline, allowing users to conveniently examine examples without requiring an internet connection.
This will be particularly beneficial for students, researchers, or professionals who want to learn or test codes in a distraction-free setting.
This eliminates the necessity of downloading datasets for each tutorial separately. Instead, it saves time and effort by providing a centralized method to access all required resources at once. For flexibility and accessibility, the downloaded datasets can be stored either in the normal SciPy dataset directory or in a custom directory.
Syntax
Following is the syntax of the SciPy download_all() method −
.download_all(path=None)
Parameters
This method has a single parameter −
path(Optional, string or Path object) − The directory to download the datasets to. If not provided, the datasets are saved in the default SciPy dataset directory.
Return Value
This method does not return any value. Datasets are only downloaded to the designated or default directory.
Example
Following is the basic example of download_all() method by using this method all of the SciPy example datasets are downloaded to a designated directory on your local computer −
from scipy.datasets import download_all # Download all example datasets to a custom directory download_all(path="my_datasets")
Before executing the above code, ensure the following prerequisites are met −
You need Python 3.8 or higher installed on your system. To verify the Python version, run the following command in command prompt.
python --version
When we run above command, it produces following result −
Python 3.10.11
Ensure, SciPy library is installed in your system. The download_all() function and the datasets module are available in SciPy since version 1.11.0. Install or update SciPy using −
pip install scipy --upgrade
Following is the output of the above command −
Successfully installed pip-24.3.1
You also need to install pooch library because, pooch was created to effectively fetch, download, and cache datasets, guaranteeing that files are only downloaded once and are used repeatedly across sessions.
pip install pooch
To check if the pooch is installed and it's version use the following command.
pip show pooch
Following is the output of the above command −
Name: pooch Version: 1.8.2
Now to run the script save the file in .py format. Save the file with the name like download_datsets.py. Replace "my_datasets" in the code with the full path to a directory on your laptop where you want the datasets to be saved.
from scipy.datasets import download_all from pathlib import Path # Download datasets to the current working directory download_all(path="my_datasets") print("downloaded successfully")
Navigate to the directory where the script is saved use cd. For example −
cd /path/to/your/script/directory
Once you are in the correct directory, type to run the Python script.
python download_datasets.py
Following is the output of the above command −
downloaded successfully
This script will download the required datasets from SciPy's datasets module to the directory specified in this case "my_datasets". If you don't specify the directory, the datasets will be saved in the default directory where SciPy stores them.